Напряжение прикосновения в электробезопасности

Насколько тяжело будет травмирован человек электрическим током, попав под напряжение? Это зависит от многих факторов, таких как род тока в сети, путь прохождения тока в теле пострадавшего, электрическое сопротивление тела и, конечно, напряжение прикосновения.

Вот о последнем факторе и хотелось бы поговорить подробнее. Одно время мне доводилось слушать лекции по электробезопасности от профессора кафедры электрических станций местного технического университета. Знания административно-технического персонала с правом по должности проверяются ежегодно, поэтому из года в год мне приходилось видеть, как профессор исполняет перед аудиторией один и тот же трюк.

Трюк заключался в следующем: профессор, уважаемый человек преклонных лет, откровенно хулиганил, сгибая металлическую скрепку для бумаг и засовывая ее голыми руками поочередно в оба разъема электрической розетки 220 вольт. При этом последствий для здоровья профессора не наступало, током его не било. Так он иллюстрировал понятие напряжения прикосновения.

Другой иллюстрацией к этой же теме от того же профессора был рассказ о том, как он подрабатывал цеховским электриком и проверял, не греются ли контактные соединения в сборных щитах и распределительных устройствах. Метод проверки им был избран далеко не косвенный – он просто щупал голыми руками зажимные болты и кабельные наконечники, находящиеся под напряжением, повергая в ужас всех работников цеха и даже главного энергетика предприятия.

Конечно, за этим поведением профессора чувствуется неприкрытая бравада и желание эпатировать публику. Но почему же его действительно не било током? Да потому что напряжение его прикосновения к токоведущим частям было близким к нулю!

Если немного знать электротехнику, то ответ очевиден. Ведь в соответствии с законом Ома каждый элемент цепи «берет на себя» часть напряжения, прямо пропорциональную его электрическому сопротивлению. Цепь в случае фокуса со скрепкой создается примерно такая: фазный провод – скрепка – рука профессора – его, пардон, ноги – подошвы его ботинок – линолеум на полу – доски пола – бетонная стяжка пола – заземленные металлоконструкции здания.

Как видите, между телом профессора и надежным «нулем» есть масса элементов цепи, сопротивление которых исчисляется, как минимум, килоомами. Эти-то линолеумы и доски и брали на себя все опасные 220В. Поэтому ежегодная «скрепочная миниатюра» от профессора производила неизгладимое впечатление лишь на уборщиц и завхозов, аттестующихся на первую группу по электробезопасности. Остальная аудитория была знакома с законом Ома достаточно хорошо.

Но, несмотря на то, что профессор много раз проводил такие эксперименты, повторять его «подвиги» не следует. И не только потому, что нормами электробезопасности не рекомендуется прикасаться к токоведущим частям электроустановок, находящимся под напряжением. Просто, определяя напряжение прикосновения на глаз, очень легко можно ошибиться с параметрами цепи. А такая ошибка может стать фатальной.

К примеру, профессор, щупая контакт в цеховой электроустановке, мог не заметить, что из его ботинка предательски вылез гвоздь, и что неизвестный доброжелатель щедро оросил соляным раствором пол вокруг этой самой установки. Да еще и руки у профессора могли некстати оказаться потными. И чем бы тогда кончилась эта рядовая проверка?

Поэтому не следует надеяться, что напряжение прикосновения будет малым. Нужно помнить, что оно может принять и номинальную для электроустановки величину. Лучше проявить излишнюю бдительность, чем пострадать от собственной беспечности.

Александр Молоков, Электрик Инфо