Как передается электроэнергия от электростанций к потребителям

Генераторные установки преобразуют энергию рек, ветра, сгорания топлива и даже атомных связей в электричество. Они распределены по всей стране, объединены в единую систему трансформаторными подстанциями. Передача электроэнергии на расстояние между ними производится линиями электропередач. Их протяженность может составлять от двух-трех до сотен километров.

Транспортные магистрали электрической энергии

Электроэнергия больших мощностей может передаваться по силовым кабелям, закопанным в землю или заглубленным в водоемы. Но наиболее распространен метод транспортировки по воздушным линиям, закрепленным на специальных инженерных сооружениях — опорах.

Так они выглядят для ВЛ-330 кВ (для увеличения нажмите на фотографию):

А вот фотография отдельной линии 110 кВ.

Электрические подстанции

Воздушные и кабельные ЛЭП соединяют между собой трансформаторные подстанции с распределительными устройствами одинакового напряжения для передачи энергии от одного силового трансформатора к другому.

Например, автотрансформатор 330/110/10 кВ принимает по высокой стороне 330 мощности от нескольких линий. Передача электроэнергии потребителям происходит по средней 110 и низкой 10 кВ части.

Однако автотрансформатор может питаться со стороны среднего или низкого напряжения. Это зависит от состояния схемы и динамики процессов, происходящих в ней.

Фрагмент Автотрансформатора-330кВ.

Вид трансформатора 110/10 удаленной подстанции, который получает электроэнергию по стороне 110, распределяя ее по линиям 10 кВ.

Он же, но с противоположной стороны.

Для подключения линий к трансформаторам используются огороженные участки местности, на которых монтируются силовые элементы схемы.

Вид небольшого фрагмента открытого распределительного устройства подстанции 330 кВ.

Часть территории ОРУ-110кВ.

Вариант передачи электрической энергии от ввода 110 АТ-330 к трансформатору 110/10 кВ

Пример фрагмента первичной силовой схемы (одной секции) распределения электроэнергии на открытой местности для 7 воздушных ЛЭП (для увеличения нажмите на картинку):

Здесь реализована возможность перевода питания от вводов 110 АТ №1 или АТ №2. В схеме выполнено подключение каждого ввода АТ к своей системе шин выключателями №10 и №15 с разделением шин на секции через выключатели №8 и №9 при использовании обходной системы шин, коммутируемой выключателем №13. Шины 1СШ и 2 СШ могут объединяться выключателем №18.

Воздушные ЛЭП питаются от выключателей №11, 12, 14, 16, 17, 19, 20. В схеме предусмотрен вывод из работы каждого из них для питания ВЛ через обходную систему шин.

Элегазовый выключатель 110 кВ в этой схеме представлен на фото.

От него мощности передаются на воздушную ЛЭП к отдаленной подстанции 110/10. На фото ниже показаны ее основные силовые элементы начиная от конечной вводной опоры ЛЭП (для увеличения нажмите на рисунок):

Электроэнергия поступает к силовому трансформатору через разъединитель, отделитель, измерительные трансформаторы тока и напряжения.

Каждый из них выполняет определенные задачи:

  • Измерительные ТТ и ТН оценивают вектора токов и напряжений в фазах первичной схемы с определенными метрологическими погрешностями, передают их во вторичные устройства защит, автоматики, измерений для последующей обработки;

  • Разъединитель служит для ручного размыкания/включения силовой цепи при отсутствии нагрузки на силовых проводах схемы;

  • Отделитель в автоматическом режиме отключает силовой трансформатор подстанции от линии в бестоковую паузу, которая создается при аварийных режимах в трансформаторе.

Для сравнения картины передаваемых мощностей и сложности конструкций посмотрите вид разъединителя на ОРУ-330 кВ. Его приводят в действие мощные трехфазные электродвигатели, управляемые автоматикой с цепями сигнализации.

В сети 380/220 вольт такое устройство — обыкновенный рубильник. Но вернемся к схеме подстанции 110/10 кВ.

Обратите внимание! Высоковольтного выключателя для устранения аварий на ней нет.

Однако это не значит, что вопросами безопасной эксплуатации пренебрегли. В силовом трансформаторе постоянно происходят сложные электромагнитные преобразования с выделением тепловой энергии и передачей больших электрических мощностей. Все это контролируется измерительными органами защит.

Они расположены на отдельных панелях.

При возникновении критических ситуаций электроэнергия с оборудования снимается со всех сторон: 110 и 10 кВ. Питающее напряжение отключается в этой схеме элегазовым выключателем, расположенным на подстанции 330/110 кВ.

Чтобы он сработал, используется короткозамыкатель (для увеличения нажмите на фотографию):

Это специальное устройство, которое служит исполнительным элементом защит силового трансформатора. Оно имеет подвижный заземленный нож с электромеханическим приводом.

При критическом режиме работы защиты, отслеживающие состояние процессов внутри трансформатора, выдают мощный импульс на электромагнит катушки короткозамыкателя. От него происходит воздействие на защелку пружинного привода, который срабатывает и накладывает нож короткозамыкателя на высоковольтные шины (принцип мышеловки).

В схеме возникает замыкание на землю. Ток от него чувствуют защиты элегазового выключателя на удаленной питающей подстанции. Их автоматика отключает выключатель на определенный интервал времени в несколько секунд.

За это время на всех подстанциях, подключенных к этой ЛЭП, создается бестоковая пауза. В течение ее защиты и автоматика рассматриваемого трансформатора выдают команду на привод отделителя, который автоматически разводит свои ножи, разрывая схему подачи напряжения к силовому трансформатору, чем окончательно «гасит подстанцию».

Все эти операции занимают порядка 4 секунд. По их истечению автоматика удаленного выключателя производит его включение с подачей напряжения на линию. Но на поврежденный силовой трансформатор оно не дойдет из-за разрыва, созданного отделителем. А все другие потребители продолжат получать электроэнергию.

Обратные коммутации короткозамыкателем и отделителем выполняются вручную оперативным персоналом после анализа работы автоматики по результатам действий цепей сигнализации.

Таким способом повышается надежность оборудования, снижаются потери при передаче электроэнергии в электрических сетях.

Схема 10 кВ

Из силового трансформатора преобразованная энергия 10 кВ поступает на ввод в КРУН — комплектное распределительное устройство наружного исполнения и распределяется через систему шин и выключатели с защитами и автоматикой по воздушным или кабельным магистралям.

Отходящие от КРУН воздушные ЛЭП-10 кВ видны на фото.

Воздушная ЛЭП 10 кВ на местности вдоль автомобильной дороги.

К таким линиям подключаются подстанции 10/0,4 кВ.

Трансформатор 10/0,4 кВ

Устройство и размеры силовых трансформаторов, преобразующих электроэнергию с напряжением 10 кВ в 380 вольт, зависят от выполняемых ими задач и передаваемых мощностей. Их внешние габариты можно оценить по нескольким фото.

Конструкция в отдельном закрытом сооружении для многоэтажных зданий в поселке.

Металлические закрытые шкафы 10/0,4 кВ в сельской местности.

Трансформатор 10/0,4 кВ в гаражном кооперативе (для увеличения нажмите на фотографию):

Как работают такие трансформаторы, происходит передача энергии потребителям, возникают потери при передаче электроэнергии в электрических сетях и осуществляется их компенсация, будет рассказано в следующей статье.

Продолжение статьи: Как передается электроэнергия потребителям по сети 0,4 кВ

Бравый Алексей Семенович